Какое будущее у аэрокосмического транспорта. Как боинг видит будущее аэрокосмической отрасли. Космические корабли «союз»

Современные технологии и открытия выводят освоение космоса на совершенно иной уровень, однако межзвездные перелеты пока еще остаются мечтой. Но так ли она нереальна и недостижима? Что мы можем уже сейчас и чего ждать в ближайшем будущем?

11.10.2011, ВТ, 17:27, Мск

Телескопа "Кеплер" астрономы обнаружили 54 потенциально обитаемые экзопланеты. Эти далекие миры находятся в обитаемой зоне, т.е. на определенном расстоянии от центральной звезды, позволяющем поддерживать на поверхности планеты воду в жидком виде.

Однако ответ на главный вопрос, одиноки ли мы во Вселенной, получить затруднительно - из-за огромной дистанции, разделяющей Солнечную систему и наших ближайших соседей. Например, «перспективная» планета Gliese 581g находится на расстоянии в 20 световых лет – это достаточно близко по космическим меркам, но пока слишком далеко для земных инструментов.

Обилие экзопланет в радиусе 100 и менее световых лет от Земли и огромный научный и даже цивилизационный интерес, которые они представляют для человечества, заставляют по-новому взглянуть на доселе фантастическую идею межзвездных перелетов.

Ближайшие к нашей Солнечной системе звезды

Полет к другим звездам - это, разумеется, вопрос технологий. Более того, существуют несколько возможностей для достижения столь далекой цели, и выбор в пользу того или иного способа еще не сделан.

Дорогу беспилотникам

Человечество уже отправляло в космос межзвездные аппараты: зонды Pioneer и Voyager. В настоящее время они покинули пределы Солнечной системы, однако их скорость не позволяет говорить о сколь-нибудь быстром достижении цели. Так, Voyager 1, движущийся со скоростью около 17 км/с, даже к ближайшей к нам звезде Проксима Центавра (4,2 световых года) будет лететь невероятно долгий срок - 17 тысяч лет.

Очевидно, что с современными ракетными двигателями мы никуда дальше Солнечной системы не выберемся: для транспортировки 1 кг груза даже к недалекой Проксиме Центавра нужны десятки тысяч тонн топлива. При этом с ростом массы корабля увеличивается количество необходимого топлива, и для его транспортировки нужно дополнительное горючее. Замкнутый круг, ставящий крест на баках с химическим топливом - постройка космического судна весом в миллиарды тонн представляется совершенно невероятной затеей. Простые вычисления по формуле Циолковского демонстрируют, что для ускорения космических аппаратов с ракетным двигателем на химическом топливе до скорости примерно в 10% скорости света потребуется больше горючего, чем доступно в известной вселенной.

Реакция термоядерного синтеза производит энергии на единицу массы в среднем в миллион раз больше, чем химические процессы сгорания. Именно поэтому в 1970-х годах в НАСА обратили внимание на возможность применения термоядерных ракетных двигателей. Проект беспилотного космического корабля Дедал предполагал создание двигателя, в котором небольшие гранулы термоядерного топлива будут подаваться в камеру сгорания и поджигаться пучками электронов. Продукты термоядерной реакции вылетают из сопла двигателя и придают кораблю ускорение.


Космический корабль Дедал в сравнении с небоскребом Эмпайр стейт Билдинг

Дедал должен был взять на борт 50 тыс. тонн топливных гранул диаметром 40 и 20 мм. Гранулы состоят из ядра с дейтерием и тритием и оболочки из гелия-3. Последний составляет лишь 10-15 % от массы топливной гранулы, но, собственно, и является топливом. Гелия-3 в избытке на Луне, а дейтерий широко используется в атомной промышленности. Дейтериевое ядро служит детонатором для зажигания реакции синтеза и провоцирует мощную реакцию с выбросом реактивной плазменной струи, которая управляется мощным магнитным полем. Основная молибденовая камера сгорания двигателя Дедала должна была иметь вес более 218 тонн, камера второй ступени – 25 тонн. Магнитные сверхпроводящие катушки тоже под стать огромному реактору: первая весом 124,7 т, а вторая - 43,6 т. Для сравнения: сухая масса шаттла менее 100 т.

Полет Дедала планировался двухэтапным: двигатель первой ступени должен был проработать более 2 лет и сжечь 16 млрд топливных гранул. После отделения первой ступени почти два года работал двигатель второй ступени. Таким образом, за 3,81 года непрерывного ускорения Дедал достиг бы максимальной скорости в 12,2% скорости света. Расстояние до звезды Барнарда (5,96 световых лет) такой корабль преодолеет за 50 лет и сможет, пролетая сквозь далекую звездную систему, передать по радиосвязи на Землю результаты своих наблюдений. Таким образом, вся миссия займет около 56 лет.


Тор Стенфорда – колоссальное сооружение с целыми городами внутри обода

Несмотря на большие сложности с обеспечением надежности многочисленных систем Дедала и его огромной стоимостью, этот проект реализуем на современном уровне технологий. Более того, в 2009 году команда энтузиастов возродила работу над проектом термоядерного корабля. В настоящее время проект Икар включает 20 научных тем по теоретической разработке систем и материалов межзвездного корабля.

Таким образом, уже сегодня возможны беспилотные межзвездные полеты на расстояние до 10 световых лет, которые займут около 100 лет полета плюс время на путешествие радиосигнала обратно на Землю. В этот радиус укладываются звездные системы Альфа Центавра, Звезда Барнарда, Сириус, Эпсилон Эридана, UV Кита, Росс 154 и 248, CN Льва, WISE 1541-2250. Как видим, рядом с Землей достаточно объектов для изучения с помощью беспилотных миссий. Но если роботы найдут что-то действительно необычное и уникальное, например, сложную биосферу? Сможет ли отправиться к далеким планетам экспедиция с участием людей?

Полет длиною в жизнь

Если беспилотный корабль мы можем начинать строить уже сегодня, то с пилотируемым дело обстоит сложнее. Прежде всего остро стоит вопрос времени полета. Возьмем ту же звезду Барнарда. К пилотируемому полету космонавтов придется готовить со школьной скамьи, поскольку даже если старт с Земли состоится в их 20-летие, то цели полета корабль достигнет к 70-летию или даже 100-летию (учитывая необходимость торможения, в котором нет нужды в беспилотном полете). Подбор экипажа в юношеском возрасте чреват психологической несовместимостью и межличностными конфликтами, а возраст в 100 не дает надежду на плодотворную работу на поверхности планеты и на возвращение домой.

Однако есть ли смысл возвращаться? Многочисленные исследования НАСА приводят к неутешительному выводу: длительное пребывание в невесомости необратимо разрушит здоровье космонавтов. Так, работа профессора биологии Роберта Фиттса с космонавтами МКС показывает, что даже несмотря на активные физические упражнения на борту космического корабля, после трехлетней миссии на Марс крупные мышцы, например икроножные, станут на 50% слабее. Аналогично снижается и минеральная плотность костной ткани. В результате трудоспособность и выживаемость в экстремальных ситуациях уменьшается в разы, а период адаптации к нормальной силе тяжести составит не менее года. Полет же в невесомости на протяжении десятков лет поставит под вопрос сами жизни космонавтов. Возможно, человеческий организм сможет восстановиться, например, в процессе торможения с постепенно нарастающей гравитацией. Однако риск гибели все равно слишком высок и требует радикального решения.

Сложной остается и проблема радиации. Даже вблизи Земли (на борту МКС) космонавты находятся не более полугода из-за опасности радиационного облучения. Межпланетный корабль придется оснастить тяжелой защитой, но и при этом остается вопрос влияния радиации на организм человека. В частности, на риск онкологических заболеваний, развитие которых в невесомости практически не изучено. В начале этого года ученый Красимир Иванов из Германского аэрокосмического центра в Кельне опубликовал результаты интересного исследования поведения клеток меланомы (самой опасной формы рака кожи) в невесомости. По сравнению с раковыми клетками, выращенными при нормальной силе тяжести, клетки, проведшие в невесомости 6 и 24 часа, менее склонны к метастазам. Это вроде бы хорошая новость, но только на первый взгляд. Дело в том, что такой «космический» рак способен находиться в состоянии покоя десятилетия, и неожиданно масштабно распространяться при нарушении работы иммунной системы. Кроме этого, исследование дает понять, что мы еще мало знаем о реакции человеческого организма на длительное пребывание в космосе. Сегодня космонавты, здоровые сильные люди, проводят там слишком мало времени, чтобы переносить их опыт на длительный межзвездный перелет.


Проект Биосфера-2 начинался с красивой, тщательно подобранной и пышущей здоровьем экосистемы…

К сожалению, решить проблему невесомости на межзвездном корабле не так просто. Доступная нам возможность создания искусственной силы тяжести при помощи вращения жилого модуля имеет ряд сложностей. Чтобы создать земную гравитацию, даже колесо диаметром 200 м придется вращать со скоростью 3 оборота в минуту. При таком быстром вращении сила Кариолиса будет создавать совершенно непереносимые для вестибулярного аппарата человека нагрузки, вызывая тошноту и острые приступы морской болезни. Единственное решение этой проблемы - Тор Стенфорда, разработанный учеными Стенфордского университета в 1975 году. Это - огромное кольцо диаметром 1,8 км, в котором могли бы жить 10 тыс. космонавтов. Благодаря своим размерам оно обеспечивает силу тяжести на уровне 0.9-1,0 g и вполне комфортное проживание людей. Однако даже на скорости вращения ниже, чем один оборот в минуту, люди все равно будут испытывать легкий, но ощутимый дискомфорт. При этом если подобный гигантский жилой отсек будет построен, даже небольшие сдвиги в развесовке тора повлияют на скорость вращения и вызовут колебания всей конструкции.


…а закончился экологической катастрофой

В любом случае корабль на 10 тыс. человек – сомнительная затея. Для создания надежной экосистемы для такого числа людей нужно огромное количество растений, 60 тыс. кур, 30 тыс. кроликов и стадо крупного рогатого скота. Только это может обеспечить диету на уровне 2400 калорий в день. Однако все эксперименты по созданию таких замкнутых экосистем неизменно заканчиваются провалом. Так, в ходе крупнейшего эксперимента «Биосфера-2» компании Space Biosphere Ventures была построена сеть герметичных зданий общей площадью 1,5 га с 3 тыс. видами растений и животных. Вся экосистема должна была стать самоподдерживающейся маленькой «планетой», в которой жили 8 человек. Эксперимент длился 2 года, но уже после нескольких недель начались серьезные проблемы: микроорганизмы и насекомые стали неконтролируемо размножаться, потребляя кислород и растения в слишком больших количествах, также оказалось, что без ветра растения стали слишком хрупкими. В результате локальной экологической катастрофы люди начали терять вес, количество кислорода снизилось с 21% до 15%, и ученым пришлось нарушить условия эксперимента и поставлять восьмерым «космонавтам» кислород и продукты.

Таким образом, создание сложных экосистем представляется ошибочным и опасным путем обеспечения экипажа межзвездного корабля кислородом и питанием. Для решения этой проблемы понадобятся специально сконструированные организмы с измененными генами, способные питаться светом, отходами и простыми веществами. Например, большие современные цеха по производству пищевой водоросли хлореллы могут производить до 40 т суспензии в сутки. Один полностью автономный биореактор весом несколько тонн может производить до 300 л суспензии хлореллы в сутки, чего достаточно для питания экипажа в несколько десятков человек. Генетически модифицированная хлорелла могла бы не только удовлетворять потребности экипажа в питательных веществах, но и перерабатывать отходы, включая углекислый газ. Сегодня процесс генетического инжиниринга микроводорослей стал обычным делом, и существуют многочисленные образцы, разработанные для очистки сточных вод, выработки биотоплива и т.д.

Замороженный сон

Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз - это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.

К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35-40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.


Биореактор для выращивания генетически модифицированных микроводорослей и других микроорганизмов может решить проблему питания и переработки отходов

Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело. При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур. В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.

Однако существует перспективный путь решения этой проблемы - клатратные гидраты. Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.

Полет на водороде

В 1960 году физик Роберт Бассард предложил оригинальную концепцию прямоточного термоядерного двигателя, который решает многие проблемы межзвездного перелета. Суть заключается в использовании водорода и межзвездной пыли, присутствующих в космическом пространстве. Космический корабль с таким двигателем сначала разгоняется на собственном горючем, а затем разворачивает огромную, диаметром тысячи километров воронку магнитного поля, которое захватывает водород из космического пространства. Этот водород используется в качестве неисчерпаемого источника топлива для термоядерного ракетного двигателя.

Применение двигателя Бассарда сулит огромные преимущества. Прежде всего за счет «дармового» топлива есть возможность двигаться с постоянным ускорением в 1 g, а значит - отпадают все проблемы, связанные с невесомостью. Кроме того двигатель позволяет разогнаться до огромной скорости - в 50% от скорости света и даже больше. Теоретически, двигаясь с ускорением в 1 g, расстояние в 10 световых лет корабль с двигателем Бассарда может преодолеть примерно за 12 земных лет, причем для экипажа из-за релятивистских эффектов прошло бы всего 5 лет корабельного времени.

К сожалению, на пути создания корабля с двигателем Бассарда стоит ряд серьезных проблем, которые нельзя решить на современном уровне технологий. Прежде всего необходимо создать гигантскую и надежную ловушку для водорода, генерирующую магнитные поля гигантской силы. При этом она должна обеспечивать минимальные потери и эффективную транспортировку водорода в термоядерный реактор. Сам процесс термоядерной реакции превращения четырех атомов водорода в атом гелия, предложенный Бассардом, вызывает немало вопросов. Дело в том, что эта простейшая реакция трудноосуществима в прямоточном реакторе, поскольку она слишком медленно идет и, в принципе, возможна только внутри звезд.

Однако прогресс в изучении термоядерного синтеза позволяет надеяться, что проблема может быть решена, например, использованием «экзотических» изотопов и антиматерии в качестве катализатора реакции.


Сибирский углозуб может впадать в анабиоз на десятилетия

Пока изыскания на тему двигателя Бассарда лежат исключительно в теоретической плоскости. Необходимы расчеты, базирующиеся на реальных технологиях. Прежде всего, нужно разработать двигатель, способный произвести энергию, достаточную для питания магнитной ловушки и поддержания термоядерной реакции, производства антиматерии и преодоления сопротивления межзвездной среды, которая будет тормозить огромный электромагнитный «парус».

Антиматерия в помощь

Возможно, это звучит странно, но сегодня человечество ближе к созданию двигателя, работающего на антиматерии, чем к интуитивно понятному и простому на первый взгляд прямоточному двигателю Бассарда.

Термоядерный реактор на дейтерии и тритии может генерировать 6х1011 Дж на 1 г водорода – выглядит внушительно, особенно если учесть, что это в 10 миллионов раз более эффективно, чем химические ракеты. Реакция материи и антиматерии производит приблизительно на два порядка больше энергии. Когда речь идет об аннигиляции, расчеты ученого Марка Миллиса и плод его 27-летнего труда не выглядят такими уж удручающими: Миллис рассчитал затраты энергии на запуск космического корабля к Альфе Центавра и выяснил, что они составят 10 18 Дж, т.е. практически годовое потребление электричества всем человечеством. Но это всего один килограмм антивещества.


Зонд разработки Hbar Technologies будет иметь тонкий парус из углеродного волокна, покрытого ураном 238. Врезаясь в парус, антиводород будет аннигилировать и создавать реактивную тягу

В результате аннигиляции водорода и антиводорода образуется мощный поток фотонов, скорость истечения которого достигает максимума для ракетного двигателя, т.е. скорости света. Это идеальный показатель, который позволяет добиться очень высоких околосветовых скоростей полета космического корабля с фотонным двигателем. К сожалению, применить антиматерию в качестве ракетного топлива очень непросто, поскольку во время аннигиляции происходят вспышки мощнейшего гамма-излучения, которое убьет космонавтов. Также пока не существует технологий хранения большого количества антивещества, да и сам факт накопления тонн антиматерии, даже в космосе далеко от Земли, является серьезной угрозой, поскольку аннигиляция даже одного килограмма антиматерии эквивалентна ядерному взрыву мощностью 43 мегатонны (взрыв такой силы способен превратить в пустыню треть территории США). Стоимость антивещества является еще одним фактором, осложняющим межзвездный полет на фотонной тяге. Современные технологии производства антивещества позволяют изготовить один грамм антиводорода по цене в десяток триллионов долларов.

Однако большие проекты по исследованию антиматерии приносят свои плоды. В настоящее время созданы специальные хранилища позитронов, «магнитные бутылки», представляющие собой охлажденные жидким гелием емкости со стенками из магнитных полей. В июне этого года ученым ЦЕРНа удалось сохранить атомы антиводорода в течение 2000 секунд. В Университете Калифорнии (США) строится крупнейшее в мире хранилище антивещества, в котором можно будет накапливать более триллиона позитронов. Одной из целей ученых Калифорнийского университета является создание переносных емкостей для антивещества, которые можно использовать в научных целях вдали от больших ускорителей. Этот проект пользуется поддержкой Пентагона, который заинтересован в военном применении антиматерии, так что крупнейший в мире массив магнитных бутылок вряд ли будет ощущать недостаток финансирования.

Современные ускорители смогут произвести один грамм антиводорода за несколько сотен лет. Это очень долго, поэтому единственный выход: разработать новую технологию производства антиматерии или объединить усилия всех стран нашей планеты. Но даже в этом случае при современных технологиях нечего и мечтать о производстве десятков тонн антиматерии для межзвездного пилотируемого полета.

Однако все не так уж печально. Специалисты НАСА разработали несколько проектов космических аппаратов, которые могли бы отправиться в глубокий космос, имея всего один микрограмм антивещества. В НАСА полагают, что совершенствование оборудования позволит производить антипротоны по цене примерно 5 млрд долл. за 1 грамм.

Американская компания Hbar Technologies при поддержке НАСА разрабатывает концепцию беспилотных зондов, приводимых в движение двигателем, работающем на антиводороде. Первой целью этого проекта является создание беспилотного космического аппарата, который смог бы менее чем за 10 лет долететь к поясу Койпера на окраине Солнечной системы. Сегодня долететь в такие удаленные точки за 5-7 лет невозможно, в частности, зонд НАСА New Horizons пролетит сквозь пояс Койпера через 15 лет после запуска.

Зонд, преодолевающий расстояние в 250 а.е. за 10 лет, будет очень маленьким, с полезной нагрузкой всего 10 мг, но ему и антиводорода потребуется немного – 30 мг. Теватрон выработает такое количество за несколько десятилетий, и ученые смогли бы протестировать концепцию нового двигателя в ходе реальной космической миссии.

Предварительные расчеты также показывают, что подобным образом можно отправить небольшой зонд к Альфе Центавра. На одном грамме антиводорода он долетит к далекой звезде за 40 лет.

Может показаться, что все вышеописанное - фантастика и не имеет отношения к ближайшему будущему. К счастью, это не так. Пока внимание общественности приковано к мировым кризисам, провалам поп-звезд и прочим актуальным событиям, остаются в тени эпохальные инициативы. Космическое агентство НАСА запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технологического фундамента для межпланетных и межзвездных полетов. Эта программа не имеет аналогов в истории человечества и должна привлечь ученых, инженеров и энтузиастов других профессий со всего мира. С 30 сентября по 2 октября 2011 года в Орландо (штат Флорида) состоится симпозиум, на котором будут обсуждаться различные технологии космических полетов. На основании результатов таких мероприятий специалисты НАСА будут разрабатывать бизнес-план по оказанию помощи определенным отраслям и компаниям, которые разрабатывают пока отсутствующие, но необходимые для будущего межзвездного перелета технологии. Если амбициозная программа НАСА увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться с такой же легкостью, как сегодня перелетаем с материка на материк.

Михаил Левкевич

Распечатать

Кузьминова Анастасия Олеговна
Возраст: 14 лет
Место учёбы: г.Вологда, МОУ "СОШ №1 с углубленным изучением английского языка"
Город: Вологда
Руководители: Чуглова Анна Брониславовна , педагог физики в старших классах МОУ "СОШ №1 с углубленным изучением английского языка";
Кузьминов Олег Александрович .

Историко-исследовательская работа по теме:

КАКОЕ БУДУЩЕЕ У АЭРОКОСМИЧЕСКОГО ТРАНСПОРТА?

План:

  • 1. Введение
  • 2. Основная часть
  • 2.1 История развития аэрокосмических кораблей;
  • 2.2 Перспективные транспортные корабли будущего;
  • 2.3 Основные направления использования и развития перспективных транспортных систем (ПТС) ;
  • 3. Вывод
  • 4. Источники информации.

1.Введение

Впервые программу освоения космоса сформулировал К.Э.Циолковский, в которой ключевая роль принадлежит транспортным космическим системам. В настоящее время аэрокосмический транспорт используются для: научного исследования планет и космического пространства, решения военных задач, запуска искусственных спутников земли, строительства и обслуживание орбитальных станций и производств, транспортировки грузов в космосе, а так же в развитии космического туризма.

Космический корабль - это летательный аппарат, предназначенный для полета людей и перевозки грузов в космическом пространстве. Космические корабли для полета по околоземным орбитам, называют кораблями-спутниками, а для полета к другим небесным телам — межпланетными кораблями. На начальном этапе, транспортные космические корабли демонстрировали возможности космической техники и решения отдельных прикладных задач. В настоящее время перед ними стоят глобальные практические задачи, направленные на эффективное и рентабельное использование космоса.

Для достижения этих целей, необходимо решить следующие задачи:

Создание универсальных, многоразовых космических кораблей;

Использование силовых установок с более эффективными и недорогими видами топлива;

Увеличение грузоподъемности ПТС;

Экологическая и биологическая безопасность кораблей.

Актуальность:

Создание аэрокосмического транспорта будущего, позволит:

- летать, на сверхдальние, практически не ограниченные расстояния;

- активно осваивать околоземное пространство и другие планеты;

- укреплять обороноспособность нашего государства;

- создание космических электростанций и производств;

- создание крупных орбитальных комплексов;

- добывать и перерабатывать полезные ископаемые Луны и других планет;

- решение экологических проблем Земли;

- вывод искусственных спутников земли;

- развивать аэрокосмический туризм.

Цели и задачи:

- изучить историю развития космических кораблей России и США;

- сделать сравнительный анализ использования аэрокосмического транспорта будущего;

- рассмотреть основные направления использования ПТС (перспективных транспортных систем);

- определить перспективы развития транспортных систем.

2.Основная часть.

2.1 История развития аэрокосмических кораблей.

В 1903 году российский ученый К.Э.Циолковский спроектировал ракету для межпланетных сообщений.

Под руководством Сергея Павловича Королева, была создана первая в мире ракета Р-7 («Восток») , которая 4 октября 1957 года запустила в космос первый искусственный спутник Земли, а 12 апреля 1961 года, космический корабль совершил первый полет человека в космос.

На смену ракетам «Восток» пришло новое поколение одноразовых космических кораблей: «Союз», «Прогресс» и «Протон», их конструкция оказалась простой, надежной и дешевой, она применяется до сегодняшнего дня, и будет использоваться в ближайшем будущем.

«Союз» сильно отличался от ракеты «Восток» большими размерами, внутренним объемом и новыми бортовыми системами, которые позволяли решать задачи, связанные с созданием орбитальных станций. Первый запуск ракеты состоялся 23 апреля 1967 года. На базе космического корабля «Союз» была создана серия транспортным беспилотных грузовых космических кораблей « Прогресс», которая обеспечивала доставку грузов на космическую станцию. Первый запуск состоялся 20 января 1978 года. «Протон» - ракета-носитель (РН) тяжёлого класса, предназначена для выведения в Космос орбитальных станций, пилотируемых космических кораблей, тяжелых спутников Земли и межпланетных станций. Первый запуск осуществился 16 июля 1965 года.

Среди американских космических кораблей хотелось отметить «Аполлон» - единственный на данный момент космический корабль в истории, на которых люди покидали пределы низкой околоземной орбиты, преодолевали притяжения Земли, совершали успешную посадку астронавтов на Луну и возращение их на Землю. Корабль состоит из основного блока и лунного модуля (посадочная и взлетная ступени), в которой астронавты совершают посадки и стартуют с Луны. С 1968 по 1975 было запущено в небо 15 космических кораблей.

В далеких 70-х годах инженеры мечтали создать космические корабли будущего, которые в состоянии были бы перевозить грузы и людей на орбиту, а затем благополучно возвращаться на Землю, и заново быть в строю. Американской разработкой был многоразовый транспортный корабль «Спейс Шаттл», который планировалось использовать, как челнок между Землей и околоземной орбитой, доставляя полезные грузы и людей туда и обратно.Полеты в космос осуществлялись 135 раз с 12 апреля 1981 года по 21 июля 2011 года.

Советско-российской разработкой стал многоразовый транспортный крылатый космический корабль «Буран». Важным шагом на пути освоения космического пространства стала разработка универсальной ракетно-космической системы многоразового использования «Энергия-Буран». Которая состоит из сверхмощного ракетоносителя «Энергия» и орбитального многоразового корабля «Буран».

Данный корабль способен доставлять на орбиту до 30 тонн груза. Орбитальный корабль «Буран» предназначен для выполнения транспортных и военных задач, а так же орбитальных операций в космосе. После выполнения задач, корабль способен самостоятельно производить спуск в атмосфере, и горизонтальную посадку на аэродром. Первый полет совершил 15 ноября 1988 года. Проекты многоразовых космических кораблей дорогостоящие, и в настоящее время ученые совершенствуют и снижают эксплуатационные затраты, которые эффективно позволят использовать данный тип космических кораблей в будущем при создании космических производств, многоразовые корабли будут экономически эффективны, так как потребуется интенсивная эксплуатация транспортных систем.

2.2 Перспективные транспортные корабли будущего.

В настоящее время космическая отрасль не стоит на месте, и создается много новых и перспективных транспортных кораблей будущего:

Космический ракетный комплекс «Ангара» - семейство разрабатываемых перспективных ракет-носителей модульного типа с многоразовыми кислородно-керосиновыми двигателями. Ракеты предполагаются 4-х классов (лёгкий, средний, тяжелый и сверхтяжелый). Мощность этой ракеты реализуется с помощью различного числа универсальных ракетных модулей (от 1 до 7), в зависимости от класса ракеты. Первый запуск ракеты, легкого класса состоялся 9 июля 2014 года. Запуск ракеты тяжелого класса «Ангара-5» состоялся 23 декабря 2014 года.

Достоинства ракетоносителя Ангара:

- быстрая сборка ракеты из готовых модулей, в зависимости от требуемой грузоподъемности;

- запуск ракеты адаптирован с российских космодромов;

- ракета полностью производится из российских комплектующих;

- используется экологически чистое топливо;

- в перспективе, планируется выпуск двигателя первой ступени в многоразовом исполнении.

Многоразовые транспортные системы («Русь»). Перспективная пилотируемая транспортная система (ППТС) «Русь»- многоцелевой пилотируемый многоразовый космический корабль. ППТС будет выполнен в модульном исполнении базового корабля в виде функционально законченных элементов - возвращаемого аппарата и двигательного отсека. Корабль планируется бескрылым, с многоразовой возвращаемой частью усечено-конической формы. Первый запуск планируется к 2020 году.

Создан для выполнения следующих задач:

- обеспечение национальной безопасности;

- беспрепятственный доступ в космос;

- расширение задач космических производств;

- полет и посадка на Луну.

Пилотируемый многоразовый космический корабль «Орион» (США).

Корабль планируется бескрылым, с многоразовой возвращаемой частью усечено-конической формы. Предназначен для доставки людей и грузов в космос, а так же для полетов к Луне и Марсу. Первый запуск осуществился 5 декабря 2014 года. Корабль удалился на расстояние 5,8 тысяч км, а затем вернулся обратно на Землю. При возращении, корабль прошел плотные слои атмосферы со скоростью 32 тысячи км\ч, а температура поверхности корабля достигала 2,2 тысяч градусов. Все испытания космический аппарат выдержал, а значит пригоден для полетов с людьми на дальние расстояния. Начало полетов к другим планетам планируется на 2019-2020 г.

Многоразовый транспортный космический корабль « Dragon Space X » (США).

Предназначен для транспортировки полезных грузов и людей. Первый полет состоялся 1 декабря 2010 года. На борту может находиться экипаж до 7 человек и 2 тонны полезных грузов. Длительность полетов: от 1 неделе до 2 лет. Успешно эксплуатируется и планируется выпуск транспортного корабля в различных модификациях. Основным недостатком является дорогостоящая эксплуатация данного типа космических кораблей. В ближайшем будущем на «Dragon Space X» планируется многократное использование первой и второй ступени, что существенно позволит удешевить космические запуски.

Рассмотрим перспективные транспортные космические корабли, которые будут летать на сверхдальние расстояния .

Межпланетный космический корабль «Пилигрим». В США создана программа NASA (национальное управление по воздухоплаванию и следованию космического пространства) по проектированию межпланетного космического корабля, на базе миниатюрного ядерного реактора. Планируется, что силовая двигательная установка будет комбинированная и атомный реактор начнет работать, когда корабль покинет орбиту земли. Кроме того после выполненной миссии корабль будет выведен на траекторию, на которой он будет удаляться от нашей земли. Такой тип энергоустановки является очень надежным и не окажет негативного влияния на окружающую среду земли.

Наша страна является мировым лидером в области космической энергетики. В настоящее время разрабатывается транспортно-энергетический модуль на основе ядерно-энергетической силовой установки мегаваттного класса. Над данной программой работают практически весь научный потенциал России. Запуск космического корабля с ядерной энергоустановкой планируется в 2020 году. Такой вид энергоустановки сможет работать длительное время без заправки топливом. Транспортные корабли с АЭУ (атомной энергоустановкой) смогут летать на сверхдальние, практически не ограниченные расстояния, и позволят освоению дальнего космоса.

Сравнительная таблица перспективных космических кораблей.

Космический корабль

Страна

Дальность полета

Двигатель

Грузоподъемность

Дата первого запуска

Космический ракетный комплекс «Ангара»

Ракета-носитель (многоразовый)

Кислородно-керосиновый

От 1,5 до 35 т

Многоразовые транспортные системы «Русь»

Пилотируемый, многоразовый

планетная; Луна, Марс

топливный

«Орион»

Пилотируемый, многоразовый

Луна, Марс

« Dragon Space X »

Пилотируемый, многоразовый

«Пилигрим»

Многоразовый

планетная

Ядерный, комбинированный

Транспортно-энергетический модуль

многоразовый

дальние расстояния

Ядерный, комбинированный

Наиболее перспективным транспортным кораблем будущего, является корабль с атомной энергосиловой установкой, т.к. он имеет энергоемкий двигатель, и может летать на сверхдальние расстояния. Ядерная система превосходит в 3 раза обычные установки. После решения вопросов с безопасной эксплуатацией, данный тип кораблей сможет сделать прорыв в изучении космического пространства.

2.3 Основные направления использования и развития ПТС (перспективных транспортных систем)

Основные направление использования ПТС

Научное

Промышленное

Туристическое

Военное

Исследование космоса и др. планет

Исследование и научные работы в космосе

Вывод грузов и спутников Земли на околоземную орбиту

Строит-во и обслуживание орбитальных комплексов

Создание и обслуживание космических электростанций и производств

Перемещение полезных грузов с других планет

Для создания аэрокосмического транспорта будущего, необходимо решить следующие задачи:

- силовые установки ТС должны быть оснащены более емкими источниками энергии, по сравнению с используемым сейчас топливом (ядерные энергосиловые установки, плазменные и ионные двигатели);

- перспективные силовые установки должны быть модульного исполнения, в зависимости от дальности полетов. Силовые установки должны выполняться малой, средней и большой мощности. Малая - для обслуживания околоземных орбит, средняя - транспортировка грузов на Луну и др. ближних планет, большая - для полетов межпланетных комплексов на Марс и др. дальние планеты. Межпланетные пилотируемые комплексы на дальние расстояния, из-за большого веса, должны собираться из модулей на околоземной орбите. Стыковка этих модулей должна производиться автоматически, без участия человека.

- перспективные системы должны обладать высокой степенью надежности, для обеспечения экологической безопасности;

Космические корабли должны выполняться в пилотируемых и беспилотных режимах, с возможностью дистанционного управления с Земли. Для выполнения пилотируемых полетов космические межпланетные корабли должны иметь все виды защит, для нормального существования всех членов экипажа.

3. Вывод

В работе приведены примеры последних перспективных разработок транспортных систем России и США, которые будут строиться по следующим принципам:

Универсальное модульное исполнение;

Использование энергоэффективных силовых установок;

Возможность сборки модулей в космосе;

Высокая степень автоматизации ТС;

Возможность дистанционного управления;

Экологическая безопасность;

Безопасная эксплуатация корабля и членов экипажа.

После решения этих задач, ПТС позволят активно осваивать космическое пространство, создавать производства в космосе, развивать космический туризм, решать научные и военные задачи.

Несмотря на то, что удалось собрать немало информации, работу хотелось бы продолжить по следующим направлениям:

Применение новых видов топлива на ПТС;

Совершенствование систем безопасной эксплуатации комических кораблей будущего.

4. Источники информации:

1. Ангара - ракета-носитель, - Википедия - свободная интернет энциклопедия, https://ru.wikipedia.org/wiki/ангара_(ракета-носитель), дата обращения 29.11.2014;

2. Грязнов Г.М. Космическая атомная энергетика и новые технологии (Записки директора), -М:ФГУП «ЦНИИатоминформ», 2007;

3. Емельяненков А. Буксир в невесомость, - Российская газета, http://www.rg.ru/2012/10/03/raketa.html, дата обращения 01.12.2014;

4. Королев Сергей Павлович, - Википедия - свободная энциклопедия, https://ru.wikipedua.org/wiki/Королев,_Сергей Павлович, дата обращения 28.11.2014;

5. Космический корабль «Орион», - Объектив Х, за гранью видимого, http://www.objectiv-x.ru/kosmicheskie-korabli-buduschego/kosmicheskiy_korabl_orion.html, дата обращения - 02.12.2014;

6. Космический корабль Русь, - Объектив Х, за гранью видимого, http://www.objectiv-x.ru/kosmicheskie-korabli-buduschego/kosmicheskij-korabl-rus.html, дата обращения 02.12.2014;

7. Легостаев В.П., Лопота В.А., Синявский В.В. Перспективы и эффективность применения космических ядерно-энергетических установок и ядерных электроракетных двигательных установок, - Космическая техника и технология №1 2013 г., Ракетно-космическая корпорация «Энергия» им. С.П Королева, http://www.energia.ru/ktt/archive/2013/01-01.pdf, дата обращения 23.11.2014;

8. Перспективная пилотируемая транспортная система, -Википедия - свободная интернет энциклопедия, https://ru.wikipedia.org/wiki/перспективная_пилотируемая_тринаспортная_система, дата обращения 24.11.2014;

– самую тяжелую грузоподъемную ракету на настоящий момент – и, возможно, транспортная революция ближе, чем мы думаем. Рассказываем, каким удивительным может быть транспорт будущего.

Автомобиль

Города будущего будут становиться все более . Машины на дорогах будут встречаться все реже – особенно в крупных городах. Мадрид, Копенгаген и Гамбург берут на вооружение политику , чтобы стать максимально и . А вот между городами автомобильные трассы станут сверхскоростными – Илон Маск уже построить такой скоростной тоннель между Лос-Анжелесом и его пригородом Калвер-Сити. По нему автомобили смогут передвигаться без пробок и со скоростью до 240 км/ч.

Сами дороги тоже изменятся и помимо транспорта будут обеспечивать населенные пункты энергией. Уже сейчас во Франции есть , выложенная солнечными батареями: на участок дороги длиной в один километр выложили 2800 квадратных метров солнечных панелей. Энергии, вырабатываемой «солнечной дорогой», хватит на все уличные фонари ближайшей деревни, а компания, выполнившая проект, считает, что Франция может стать энергетически независимой, если всего 250 тысяч километров дорог будут вымощены солнечными панелями.

Общественный транспорт

Общественный транспорт в будущем будет отказываться от ископаемых видов топлива и перейдет на возобновляемые ресурсы, которые могут оказаться непривычными. Власти Лондона уже городские автобусы на биотопливо, которое частично изготовлено из кофейной гущи. Кофейные отходы будут собирать у фабрик, баров, кофеен и ресторанов по всему городу, а затем отправлять на переработку. Новое топливо сокращает количество вредных выбросов на 10-15 %. Недостатка в нем не предвидится – население Лондона ежегодно «оставляет» после себя 200 тысяч тонн кофейных отходов.

В Осло не отстают от Лондона: с 2019 года там начнут ездить . А к 2025 году в Норвегии планируют полностью запретить авто с двигателями внутреннего сгорания. Беспилотный электроавтобус вместит 12 пассажиров и развивает скорость около 20 км/ч. Вызвать автобус можно будет при помощи специального мобильного приложения. Время ожидания – не более 10 минут.

Городские автобусы будущего станут зелеными не только в плане источников топлива, но и в прямом смысле – на крышах общественного транспорта будут сады с живыми растениями. Такой проект уже и направлен на улучшение экологической обстановки в городе и сокращение вредных выбросов в воздух. Каждый сад будет построен со специальной системой орошения и устроен таким образом, чтобы растения смогли выдержать постоянное движение.

Возможно, скоро не нужно будет покупать бесконечные талончики и проездные – достаточно будет надеть на себя определенный предмет одежды. В Берлине, например, которые являются одновременно проездным на все виды транспорта на год.

Для тех, кого в городах не устраивает ни удобный общественный транспорт, ни велосипеды, в будущем будет доступно летающее такси. Uber запустить летающие такси уже в 2020 году в Техасе и Дубае. Такое такси будет представлять собой небольшой легкомоторный самолет с электрическим двигателем. Компания планирует сделать самолеты тихими, чтобы использовать их в черте города. Еще один похожий вариант транспортировки (тоже в Дубае) – . Пассажирский дрон сможет перевозить людей весом менее 100 килограммов, максимальная его скорость составит 160 км/ч, а быть в воздухе он сможет не более 30 минут и унесет своих пассажиров на максимальное расстояние в 50 километров.

Поезд

Поезда будут все ускоряться, составляя неслабую конкуренцию самолетам. В Китае, между Пекином и Шанхаем, уже сейчас запустили . Он может разгоняться до 350 км/ч и преодолевает расстояние в 1200 км за 4 часа 28 минут. Это на полтора часа быстрее, чем другие поезда.

Но еще больше перспектив в деле поездов предложил Илон Маск еще в 2013 году с концепцией – системой поездов с электродвигателем, которые проносятся по трубопроводам с низким давлениям на воздушной или магнитной подушке. Вакуумный поезд будет в два раза быстрее самолета и в три раза быстрее скоростного поезда, достигая максимальной скорости в 1200 км/ч. Hyperloop уже показала , провела и до 310 километров в час на тестовой трассе в Неваде. Ближайший возможный маршрут соединит Абу-Даби и Дубай в 2020 году.

В Германии тоже представили свой – в нем будут спортивные тренажеры, плазменные телевизоры и переговорные отсеки со звукоизоляцией и планшетами (в качестве конкуренции – в Шотландии). Пока одни концентрируются на комфорте, другие – на технологиях: в той же Германии к 2021 году запустят . Это будет экологичный и совершенно бесшумный пассажирский поезд Coradia iLint – первый в истории поезд дальнего следования, который испускает в атмосферу лишь пар и водный конденсат. Бак с водородом располагается на крыше поезда и обеспечивает работу топливного элемента, а тот, в свою очередь, производит электроэнергию. Такой поезд может непрерывно следовать без заправки 1000 км и развивать скорость до 140 км/ч.

И, конечно, поезда будущего будут ездить на энергии из возобновляемых источников. В Нидерландах уже сейчас поезда на 100% от электроэнергии, произведенной ветром. Часа работы одной ветроустановки хватает для поездки на поезде расстоянием в 192 км. При этом до 2020 года в Нидерландах надеются уменьшить количество энергии, необходимой для перевозки одного пассажира, еще на 35%.

Самолет

Самолеты – кажется, самый привычный современным путешественникам вид транспорта, хоть и не самый экологичный из-за слишком больших выбросов СО2. Впрочем, уже есть самолет, летающий на биотопливе: в частности, самолет авиакомпании Qantas первый полет между США и Австралией с использованием биотоплива, произведенного из специального сорта горчицы. Самолет заправили 24 тоннами биотоплива из горчицы Brassica Carinata. По данным авиакомпании Qantas, это позволило уменьшить выбросы углекислого газа за один полет на 18 тонн по сравнению с использованием обычного керосина.


Британская аэрокосмическая фирма представила концепт самолёта без иллюминаторов. Вместо них они предлагают установить дисплеи, на которых бы отображались события, происходящие за бортом, демонстрировались фильмы. Самолёты без окон способны кардинально изменить облик гражданской авиации, при этом значительно снизится расход топлива.

Дизайн частного самолёта разрабатывали специалисты французской компании, проект они представили ещё в августе. Вместо иллюминаторов они предложили использовать дисплеи, демонстрирующие фильмы для отдыха и презентации для работы. Технический отдел говорит, что отсутствие окон поможет снизить вес судна, следовательно, уменьшится расход топлива, стоимость обслуживания, а освободившееся пространство расширяет возможности для усовершенствования интерьера. Гарет Дэвис, главный дизайнер «Technicon Design», компании предложившей проект, сказал, что некоторые элементы, например, гибкие дисплеи, уже можно воплотить в реальность.

Американская фирма Spike Aerospace планирует представить подобный самолёт уже в 2018 году. Это будет роскошный Spike S-512 Supersonic Jet, способный долететь от Нью-Йорка до Лондона за 4 часа с 12-18 пассажирами. Бостонская компания тоже видит самолёт будущего без окон. В результате пассажирам не придётся прятаться от солнца, то поднимая, то опуская жалюзи. Исчезнет и монотонность в полёте. Дизайнеры считают, что по большому счёту пассажиры мало что видят во время полёта – пару звёзд, луну, бескрайний океан, облака. Вес самолёта тоже уменьшится, позволив экономить топливо. Стены самолёта превратятся в огромные тонкие дисплеи, демонстрирующие окружающие судно панорамы. В качестве альтернативы можно будет посмотреть фильм, слайды, документы.

Правда, разработчики признают и возможные проблемы. Во-первых, у многих может повыситься чувство тревожности в замкнутом пространстве, когда не видно, что происходит снаружи. Во-вторых, видеть нужно не только пассажирам, но и спасателям в случае необходимости нужно видеть, что происходит внутри, в противном случае они будут действовать вслепую. И, в-третьих, возможны проблемы с людьми, страдающими от укачивания. Обычно такие пассажиры просто периодически смотрят в окно, находят для себя ориентир. Здесь же они будут лишены такой возможности, экраны не смогут им помочь.

Центр технологических новшеств (Centre for Process Innovation) тоже предлагает свой самолёт с огромными OLED дисплеями, на которые будет передаваться изображение с камер, установленных снаружи. Будет возможность подключиться к интернету. Уменьшение веса самолёта – самая важная проблема, которую стараются решить инженеры. Вот они и решили обратиться к идее строительства по аналогии с грузовыми самолётами. А пока проект находится в процессе доработки.

Аэрокосмический транспорт будущего

Мощным толчком ракета вертикально поднимается со стартовой площадки и уходит ввысь... Эта привычная картина в скором времени может кануть в Лету. На смену одноразовым космическим системам и «челнокам» должно прийти новое поколение аппаратов - воздушно-космические самолеты, которые будут обладать способностью взлетать и приземляться горизонтально, подобно обычным авиалайнерам. Участники международного исследовательского проекта знакомят читателей с некоторыми визуальными материалами, иллюстрирующими концепцию двухступенчатого аэрокосмического транспорта будущего

Дальнейшее развитие космонавтики определяется необходимостью интенсивной эксплуатации космических станций, развития систем глобальной связи и навигации, мониторинга окружающей среды в планетарном масштабе. Для этих целей в ведущих странах мира ведутся разработки воздушно-космических самолетов (ВКС) многократного использования, которые позволят существенно снизить стоимость доставки грузов и людей на орбиту. Это будут системы, характеризующиеся возможностями, наиболее актуальные из которых следующие: многоразовое использование для вывода на орбиту производственных и научно-технических грузов с относительно небольшим промежутком времени между повторными вылетам; возвращение аварийных и отработавших конструкций, засоряющих космос; спасение экипажей орбитальных станций и космических кораблей в аварийных ситуациях; срочная разведка районов стихийных бедствий и катастроф в любой точке земного шара.

В странах с развитыми авиационно-космическими технологиями достигнуты большие успехи в области высоких скоростей полета, которые определяют потенциальную возможность создания широкого спектра гиперзвуковых воздушно-реактивных самолетов. Есть все основания полагать, что в будущем пилотируемая авиация освоит скорости от чисел Маха M = 4–6 до M = 12–15 (пока держится рекорд M = 6,7, установленный еще в 1967 г. американским экспериментальным самолетом Х-15 с ракетным двигателем).

Если говорить о гражданской авиации, то освоение больших скоростей чрезвычайно важно для интенсификации пассажирских перевозок и деловых связей. Гиперзвуковые пассажирские самолеты с числом Маха 6 смогут обеспечить малоутомительную продолжительность перелета (не более 4 часов) на международных маршрутах с дальностью около 10 тыс. км, таких как Европа (Париж) – Южная Америка (Сан-Паулу), Европа (Лондон) – Индия, США (Нью-Йорк) – Япония. Вспомним, что время полета сверхзвукового «Конкорда» от Нью-Йорка до Парижа составляло около 3 часов, а «Боинг-747» затрачивает на этом маршруте около 6,5 часа. Самолеты будущего с числом Маха 10 за 4 часа смогут преодолеть 16-17 тыс. км, совершив беспосадочный перелет, например, из США или Европы в Австралию.

Новые подходы

Для гиперзвуковых самолетов необходимы новые технологии, совершенно отличные от тех, которые присущи современным самолетам и вертикально взлетающим космическим аппаратам. Конечно, ракетный двигатель производит большую тягу, но он расходует горючее в огромных количествах, и к тому же ракета должна нести окислитель на борту. Поэтому использование ракет в атмосфере ограничивается кратковременными полетами.

СЛОВАРЬ АЭРОДИНАМИЧЕСКИХ ТЕРМИНОВ

Число Маха – параметр, характеризующий, во сколько раз скорость летательного аппарата (или газового потока) больше скорости звука
Гиперзвуковая скорость – нестрогий термин для обозначения скорости с числом Маха, превышающим 4 5
Число Рейнольдса – параметр, характеризующий соотношение между силами инерции и силами вязкости в потоке
Угол атаки – наклон плоскости крыла к линии полета
Скачок уплотнения (ударная волна) – узкая область течения, в которой происходит резкое падение скорости сверхзвукового газового потока, приводящее к скачкообразному увеличению плотности
Волна разрежения – область течения, в которой происходит резкое уменьшение плотности газовой среды

Стремление решить эти сложные технические задачи привело к разработке различных концепций космиче­ских транспортных систем. Принципиальным направлением, которое активно исследуется ведущими аэрокосмическими фирмами мира, является одноступенчатый ВКС. Такой воздушно-космический самолет, взлетая с обычного аэродрома, может обеспечить доставку на околоземную орбиту полезной нагрузки, составляющей около 3% от взлетного веса. Другая концепция многоразовых систем – двухступенчатые аппараты. В этом случае первая ступень оснащается воздушно-реактивным двигателем, а вторая – является орбитальной, и разделение ступеней осуществляется в диапазоне чисел Маха от 6 до 12 на высотах около 30 км.

В 1980-1990 гг. проекты ВКС разрабатывались в США (NASP), Англии (HOTOL), ФРГ (Snger), Франции (STS-2000, STAR-H), России (ВКС НИИ-1, «Спираль», Ту-2000). В 1989 г. по инициативе Немецкого исследовательского общества (DFG) начались совместные исследования трех германских центров: Рейн-Вестфальской технической высшей школы в Ахене, Технического университета Мюнхена и Университета Штутгарта. Эти центры, спонсируемые DFG, провели долгосрочную программу исследований, включающую изучение фундаментальных вопросов, необходимых для проектирования космических транспортных систем, таких как общая разработка, аэродинамика, термодинамика, механика полета, двигатель, материалы и пр. Значительная часть работ по экспериментальной аэродинамике была выполнена в сотрудничестве с Институтом теоретической и прикладной механики им. С. А. Христиановича СО РАН. Организация и координация всех исследовательских работ осуществлялись комитетом, который в течение десяти лет возглавлял один из авторов настоящей статьи (Э. Краузе). Мы предлагаем вниманию читателя ряд наиболее наглядных визуальных материалов, иллюстрирующих некоторые результаты, полученные в рамках этого проекта в области аэродинамики.

Двухступенчатая система ELAC–EOS

Для исследований была предложена концепция двухступенчатого аэрокосмического аппарата (несущая ступень называлась по-немецки ELAC, орбитальная – ЕОS). Топливо – жидкий водород. Предполагалось, что полномасштабная конфигурация ELAC будет иметь длину 75 м, размах крыла – 38 м и большой угол стреловидности . При этом длина ступени EОS составляет 34 м, а размах крыла – 18 м. Орбитальная ступень имеет эллиптическую носовую часть, центральный корпус с полуцилиндрической верхней стороной и один киль в плоскости симметрии. На верхней поверхности первой ступени имеется углубление, в котором размещена орбитальная ступень при наборе высоты. Хотя оно неглубокое, при гиперзвуковых скоростях во время разделения (M = 7) оказывает существенное влияние на характеристики потока.

Для проведения теоретических и экспериментальных исследований были спроектированы и изготовлены несколько моделей несущей и орбитальной ступеней в масштабе 1:150. Для испытаний при малых скоростях в германско-голландской аэродинамической трубе DNW была сделана большая модель исследуемой конфигурации в масштабе 1:12 (длина более 6 м, масса около 1600 кг).

Визуализация сверхзвука

Полет со сверхзвуковой скоростью представляет для исследователя большую сложность, поскольку сопровождается формированием ударных волн, или скачков уплотнения , а летательный аппарат в таком полете проходит несколько режимов обтекания (с различными локальными структурами), сопровождающихся ростом тепловых потоков.

Эта задача в проекте ELAC–EOS исследовалась и экспериментально, и численно. Большинство экспериментов было проведено в аэродинамической трубе T-313 ИТПМ СО РАН в Новосибирске. Число Маха набегающего потока в этих экспериментах изменялось в диапазоне 2 < М < 4, число Рейнольд­са – 25 10 6 < Re < 56 10 6 , а угол атаки – в диапазоне – 3° < α < 10°. При этих параметрах измерялось распределение давлений, аэродинамические силы и моменты, а также выполнялась визуализация линий тока на поверхности модели.

Полученные результаты в числе прочего ясно демонстрируют образование вихрей на подветренной стороне. Панорамные картины течений на поверхности модели визуализировались посредством покрытия специальными жидкостями или маслосажевой смесью. В типичном примере маслосажевой визуализации видно, как поверхностные линии тока сворачивают внутрь от передней кромки крыла и стекаются в линию, ориентированную приблизительно в направлении течения. Наблюдаются также другие полосы, направленные в сторону центральной линии модели.

Эти четкие следы на подветренной стороне характеризуют поперечное течение, трехмерную структуру которого можно наблюдать с помощью метода лазерного ножа. С увеличением угла атаки поток воздуха перетекает с наветренной поверхности крыла на подветренную, формируя сложную вихревую систему. Отметим, что первичные вихри с пониженным давлением в ядре вносят положительный вклад в подъемную силу аппарата. Сам метод лазерного ножа основан на фотографировании когерентного излучения, рассеянного на вводимых в поток твердых или жидких микрочастицах, распределение концентрации которых обусловливается структурой исследуемых течений. Когерентный источник света формируется в виде тонкой световой плоскости, что, собственно, и дало название методу. Интересно, что с точки зрения обеспечения необходимой контрастности изображения очень эффективными оказываются микрочастицы обычной воды (туман).

ТЕНЕВОЙ МЕТОД ТЕПЛЕРА

Еще в 1867 г. немецкий ученый А. Теплер предложил метод обнаружения оптических неоднородностей в прозрачных средах, который до сих пор не потерял актуальности в науке и технике. В частности, он широко применяется для исследования распределения плотности воздушных потоков при обтекании моделей летательных аппаратов в аэродинамических трубах.
Оптическая схема одной из реализаций метода представлена на рисунке. Пучок лучей от щелевого источника света системой линз направляется через исследуемый объект и фокусируется на кромке непрозрачной ширмы (так называемый нож Фуко ). Если в исследуемом объекте нет оптических неоднородностей, то все лучи задерживаются ножом. При наличии неоднородностей лучи будут рассеиваться, и часть их, отклонившись, пройдет выше кромки ножа. Поставив за плоскостью ножа Фуко проекционный объектив, можно спроектировать эти лучи на экран (направить в фотокамеру) и получить изображение неоднородностей.
Рассмотренная простейшая схема позволяет визуализировать градиенты плотности среды , перпендикулярные кромке ножа, градиенты же плотности по другой координате приводят к смещению изображения вдоль кромки и не меняют освещенности экрана. Существуют различные модификации метода Теплера. Например, вместо ножа устанавливается оптический фильтр, состоящий из параллельных полосок разных цветов. Или используется круглая диафрагма с цветными секторами. В этом случае при отсутствии неоднородностей лучи из разных точек проходят через одно и то же место диафрагмы, поэтому все поле окрашено в один цвет. Появление неоднородно­стей обусловливает отклонение лучей, которые проходят через разные секторы, и изображения точек с различным отклонением света окрашиваются в соответствующие цвета

При определенных условиях ядра вихрей могут разрушаться, что уменьшает подъемную силу крыла. Этот процесс, называемый срывом вихря, развивается по типу «пузырь» или «спираль», визуальные различия между которыми демонстрирует фотография, сделанная с помощью впрыска флуоресцентной краски. Обычно пузырьковый режим срыва вихря предшествует распаду по спиральному типу.

Полезную информацию о спектрах сверхзвукового обтекания летательных аппаратов дает теневой метод Теплера . С его помощью визуализируются неоднородности в газовых потоках, при этом особенно хорошо видны скачки уплотнения и волны разрежения.

Разделение ступеней

Разделение несущей и орбитальной ступеней – одна из самых трудных задач, рассмотренных в ходе работы над проектом ELAC–EOS. В целях безопасности маневрирования этот этап полета требует особенно тщательного изучения. Численные исследования его различных фаз были проведены в центре SFB 255 при Техническом университете Мюнхена, а вся экспериментальная работа выполнена в Институте теоретической и прикладной механики СО РАН. Испытания в сверхзвуковой аэродинамической трубе T-313 включали в себя визуализацию обтекания полной конфигурации и измерения аэродинамических характеристик и поверхностных давлений в процессе разделения ступеней.

Модель нижней ступени ELAC 1C отличалась от первоначального варианта ELAC 1 отсеком небольшой глубины, в котором должна располагаться орбитальная ступень во время взлета и набора высоты. Компьютерное моделирование проводилось при числе Маха набегающего потока М = 4,04, числе Рейнольдса Re = 9,6 10 6 и нулевом угле атаки модели EOS.

Наблюдалось хорошее согласие между расчетными и экспериментальными данными, что подтверждает надежность численного решения при прогнозировании гиперзвуковых течений. Пример расчетной картины распределения чисел Маха (скоростей) в потоке во время процесса разделения представлен на этой странице. На обеих ступенях видны скачки уплотнения и локальные разрежения. У задней части конфигурации ELAC 1C в реальности разрежения не будет, поскольку там разместится гиперзвуковой прямоточный воздушно-реактивный двигатель.

В целом можно сказать, что исследования аэродинамической концепции двухступенчатой системы ELAC–EOS, инициированные Немецким исследовательским обществом DFG, оказались успешными. В результате обширного комплекса теоретических и экспериментальных работ, в которых участвовали научные центры Европы, Азии, Америки и Австралии, был выполнен полный расчет конфигурации, способной к горизонтальному взлету и посадке в стандартном аэропорту, решены аэродинамические задачи полета с низкими, сверхзвуковыми и особенно гиперзвуковыми скоростями.

В настоящее время ясно, что создание перспективного аэрокосмического транспорта требует еще детальных исследований по разработке гиперзвуковых воздушно-реактивных двигателей, надежно работающих в широком диапазоне скоростей полета, высокоточных систем управления процессами разделения ступеней и посадки орбитального модуля, новых высокотемпературных материалов и т.д. Решение всех этих сложных научно-технических задач невозможно без объединения усилий ученых разных стран. И опыт данного проекта только подтверждает: долговременное международное сотрудничество становится неотъемлемым элементом аэрокосмических исследований.

Литература

Kharitonov A.M., Krause E., Limberg W. et al. // J. Experiments in Fluids. 1999. V. 26. P. 423.

Brodetsky M.D., Kharitonov A.M., Krause E. et al. // J. Experiments in Fluids. 2000. V. 29. P. 592.

Brodetsky M.D., Kharitonov A.M., Krause E. et al. // Proc. at X Int. Conference on the Methods of Aerophysical Research. Novosibirsk. 2000. V. 1. P. 53.

Krause E., Brodetsky M.D., Kharitonov A.M. // Proc. at WFAM Congress. Chicago, 2000.

Бродецкий М.Д., Краузе Э., Никифоров С.Б. и др. // ПМТФ. 2001. Т. 42. С. 68.